Derivations

Paul Kiparsky
Argue with me!
And with each other!
Derivations in phonology: a brief history

 - Argument 1: rules impose an arbitrary direction of dependence on co-occurrence restrictions.
 - Argument 2: rule ordering is not needed for phonotactics.

3. Kisseberth (1970): proposed to solve the CONSPIRACIES PROBLEM by OUTPUT CONSTRAINTS, allowing the shared context of rules be factored out.
Derivations in phonology: a brief history

 - Argument 1: rules impose an arbitrary direction of dependence on co-occurrence restrictions.
 - Argument 2: rule ordering is not needed for phonotactics.

3. Kisseberth (1970): proposed to solve the CONSPIRACIES PROBLEM by OUTPUT CONSTRAINTS, allowing the shared context of rules be factored out.
Derivations in phonology: a brief history

 - Argument 1: rules impose an arbitrary direction of dependence on co-occurrence restrictions.
 - Argument 2: rule ordering is not needed for phonotactics.

3. Kisseberth (1970): proposed to solve the CONSPIRACIES PROBLEM by OUTPUT CONSTRAINTS, allowing the shared context of rules be factored out.
Pāṇini (ca. 500 B.C.), Chomsky (1951), Halle (1962): ordered rules derive phonetic representations from underlying representations.

Stanley (1967): ordered rules plus morpheme structure constraints (well-formedness conditions).

- Argument 1: rules impose an arbitrary direction of dependence on co-occurrence restrictions.
- Argument 2: rule ordering is not needed for phonotactics.

Kisseberth (1970): proposed to solve the CONSPIRACIES PROBLEM by OUTPUT CONSTRAINTS, allowing the shared context of rules be factored out.
Derivations in phonology: a brief history

 - Argument 1: rules impose an arbitrary direction of dependence on co-occurrence restrictions.
 - Argument 2: rule ordering is not needed for phonotactics.

3. Kisseberth (1970): proposed to solve the CONSPIRACIES PROBLEM by OUTPUT CONSTRAINTS, allowing the shared context of rules be factored out.
Kisseberth’s translation of “functional unity” into formal simplicity was only partially successful, because

- you can’t simplify rules which are triggered by a constraint,
- rules can create prohibited configurations if the output is repaired by a subsequent rule, and
- there was no substantive theory of targets.

Stampe (1972/1979): back to a strictly processual account, even of phonotactics. Distinguish RULES (learned) and PROCESSES (innate). Conflicts between them resolved by limitation, suppression, and ordering.

Kisseberth’s translation of “functional unity” into formal simplicity was only partially successful, because

- you can’t simplify rules which are triggered by a constraint,
- rules can create prohibited configurations if the output is repaired by a subsequent rule, and
- there was no substantive theory of targets.

Stampe (1972/1979): back to a strictly processual account, even of phonotactics. Distinguish RULES (learned) and PROCESSES (innate). Conflicts between them resolved by limitation, suppression, and ordering.

Kisseberth’s translation of “functional unity” into formal simplicity was only partially successful, because:

- you can’t simplify rules which are triggered by a constraint,
- rules can create prohibited configurations if the output is repaired by a subsequent rule, and
- there was no substantive theory of targets.

Stampe (1972/1979): back to a strictly processual account, even of phonotactics. Distinguish RULES (learned) and PROCESSES (innate). Conflicts between them resolved by limitation, suppression, and ordering.

Kisseberth’s translation of “functional unity” into formal simplicity was only partially successful, because

- you can’t simplify rules which are triggered by a constraint,
- rules can create prohibited configurations if the output is repaired by a subsequent rule, and
- there was no substantive theory of targets.

Stampe (1972/1979): back to a strictly processual account, even of phonotactics. Distinguish RULES (learned) and PROCESSES (innate). Conflicts between them resolved by limitation, suppression, and ordering.

Derivations in phonology: a brief history

1. Kisseberth’s translation of “functional unity” into formal simplicity was only partially successful, because:
 - you can’t simplify rules which are triggered by a constraint,
 - rules can create prohibited configurations if the output is repaired by a subsequent rule, and
 - there was no substantive theory of targets.

2. Stampe (1972/1979): back to a strictly processual account, even of phonotactics. Distinguish RULES (learned) and PROCESSES (innate). Conflicts between them resolved by limitation, suppression, and ordering.

1 Kisseberth’s translation of “functional unity” into formal simplicity was only partially successful, because
 - you can’t simplify rules which are triggered by a constraint,
 - rules can create prohibited configurations if the output is repaired by a subsequent rule, and
 - there was no substantive theory of targets.

2 Stampe (1972/1979): back to a strictly processual account, even of phonotactics. Distinguish RULES (learned) and PROCESSES (innate). Conflicts between them resolved by limitation, suppression, and ordering.

1. Prince & Smolensky (1993): ranked constraints uniquely determine the processes that implement them.

2. Constraints are violable, but violation is minimal.

3. Constraints can both “trigger” and “block” processes. Schematically:
 - \(P \rightarrow Q \) is triggered in the context \(X___Y \) if \(*XPY \gg *Q \),
 - \(P \rightarrow Q \) is blocked in the context \(X___Y \) if \(*XQY \gg *P \).

4. The constraint system evaluates output representations. (Under Harmonic Serialism, it evaluates each step in a derivation.)

5. A ranking determines a grammar, the possible rankings determine the typological space.

6. To the extent that constraints are grounded and universal, OT is a theory of naturalness.
Optimality Theory

1. Prince & Smolensky (1993): ranked constraints uniquely determine the processes that implement them.

2. Constraints are violable, but violation is minimal.

3. Constraints can both “trigger” and “block” processes. Schematically:
 - $P \rightarrow Q$ is triggered in the context $X___Y$ if $*XPY \gg *Q$.
 - $P \rightarrow Q$ is blocked in the context $X___Y$ if $*XQY \gg *P$.

4. The constraint system evaluates output representations. (Under Harmonic Serialism, it evaluates each step in a derivation.)

5. A ranking determines a grammar, the possible rankings determine the typological space.

6. To the extent that constraints are grounded and universal, OT is a theory of naturalness.
Optimality Theory

1. Prince & Smolensky (1993): ranked constraints uniquely determine the processes that implement them.
2. Constraints are violable, but violation is minimal.
3. Constraints can both “trigger” and “block” processes. Schematically:
 - P → Q is triggered in the context X___Y if *XPY ≫ *Q,
 - P → Q is blocked in the context X___Y if *XQY ≫ *P.
4. The constraint system evaluates output representations. (Under Harmonic Serialism, it evaluates each step in a derivation.)
5. A ranking determines a grammar, the possible rankings determine the typological space.
6. To the extent that constraints are grounded and universal, OT is a theory of naturalness.
Optimality Theory

1. Prince & Smolensky (1993): ranked constraints uniquely determine the processes that implement them.

2. Constraints are violable, but violation is minimal.

3. Constraints can both “trigger” and “block” processes. Schematically:
 - $P \rightarrow Q$ is triggered in the context $X___Y$ if $*XPY \gg *Q$,
 - $P \rightarrow Q$ is blocked in the context $X___Y$ if $*XQY \gg *P$.

4. The constraint system evaluates output representations. (Under Harmonic Serialism, it evaluates each step in a derivation.)

5. A ranking determines a grammar, the possible rankings determine the typological space.

6. To the extent that constraints are grounded and universal, OT is a theory of naturalness.
Optimality Theory

1. Prince & Smolensky (1993): ranked constraints uniquely determine the processes that implement them.

2. Constraints are violable, but violation is minimal.

3. Constraints can both “trigger” and “block” processes. Schematically:
 - \(P \rightarrow Q \) is triggered in the context \(X___Y \) if \(*XPy \gg *Q \),
 - \(P \rightarrow Q \) is blocked in the context \(X___Y \) if \(*Xqy \gg *P \).

4. The constraint system evaluates output representations. (Under Harmonic Serialism, it evaluates each step in a derivation.)

5. A ranking determines a grammar, the possible rankings determine the typological space.

6. To the extent that constraints are grounded and universal, OT is a theory of naturalness.
Optimality Theory

1. Prince & Smolensky (1993): ranked constraints uniquely determine the processes that implement them.

2. Constraints are violable, but violation is minimal.

3. Constraints can both “trigger” and “block” processes. Schematically:
 - $P \rightarrow Q$ is triggered in the context $X___Y$ if $*XPY \gg *Q$, $P \rightarrow Q$ is blocked in the context $X___Y$ if $*XQY \gg *P$.

4. The constraint system evaluates output representations. (Under Harmonic Serialism, it evaluates each step in a derivation.)

5. A ranking determines a grammar, the possible rankings determine the typological space.

6. To the extent that constraints are grounded and universal, OT is a theory of naturalness.
Optimality Theory

1. Prince & Smolensky (1993): ranked constraints uniquely determine the processes that implement them.

2. Constraints are violable, but violation is minimal.

3. Constraints can both “trigger” and “block” processes. Schematically:
 - P → Q is triggered in the context X___Y if *XPY ∝ *Q,
 - P → Q is blocked in the context X___Y if *XQY ∝ *P.

4. The constraint system evaluates output representations. (Under Harmonic Serialism, it evaluates each step in a derivation.)

5. A ranking determines a grammar, the possible rankings determine the typological space.

6. To the extent that constraints are grounded and universal, OT is a theory of naturalness.
Prince & Smolensky (1993): ranked constraints uniquely determine the processes that implement them.

Constraints are violable, but violation is minimal.

Constraints can both “trigger” and “block” processes. Schematically:

- P → Q is triggered in the context X____Y if *XPY ≫ *Q,
- P → Q is blocked in the context X____Y if *XQY ≫ *P.

The constraint system evaluates output representations. (Under Harmonic Serialism, it evaluates each step in a derivation.)

A ranking determines a grammar, the possible rankings determine the typological space.

To the extent that constraints are grounded and universal, OT is a theory of naturalness.
The “derivational residue”

1. Two major problems
 - Opacity
 - Cyclicity

2. Two types of solutions
 - Introduce transderivational faithfulness constraints (Sympathy, O/O) and/or transderivational constraints formulated over faithfulness relations (OT-CC).
 - Modularity: level-ordered cascade of classic OT constraint systems (Stratal OT). Expressions are interpreted incrementally as they are built up, so morphology and phonology are intrinsically cyclic and local. (Interleaving now also in DM, Embick 2010).
The “derivational residue”

1 Two major problems
 - Opacity
 - Cyclicity

2 Two types of solutions
 - Introduce transderivational faithfulness constraints (Sympathy, O/O) and/or transderivational constraints formulated over faithfulness relations (OT-CC).
 - Modularity: level-ordered cascade of classic OT constraint systems (Stratal OT). Expressions are interpreted incrementally as they are built up, so morphology and phonology are intrinsically cyclic and local. (Interleaving now also in DM, Embick 2010).
The “derivational residue”

1. Two major problems
 - Opacity
 - Cyclicity

2. Two types of solutions
 - Introduce transderivational faithfulness constraints (Sympathy, O/O) and/or transderivational constraints formulated over faithfulness relations (OT-CC).
 - Modularity: level-ordered cascade of classic OT constraint systems (Stratal OT). Expressions are interpreted incrementally as they are built up, so morphology and phonology are intrinsically cyclic and local. (Interleaving now also in DM, Embick 2010).
The “derivational residue”

1. Two major problems
 - Opacity
 - Cyclicity

2. Two types of solutions
 - Introduce transderivational faithfulness constraints (Sympathy, O/O) and/or transderivational constraints formulated over faithfulness relations (OT-CC).
 - Modularity: level-ordered cascade of classic OT constraint systems (Stratal OT). Expressions are interpreted incrementally as they are built up, so morphology and phonology are intrinsically cyclic and local. (Interleaving now also in DM, Embick 2010).
The “derivational residue”

1. Two major problems
 - Opacity
 - Cyclicity

2. Two types of solutions
 - Introduce transderivational faithfulness constraints (Sympathy, O/O) and/or transderivational constraints formulated over faithfulness relations (OT-CC).
 - Modularity: level-ordered cascade of classic OT constraint systems (Stratal OT). Expressions are interpreted incrementally as they are built up, so morphology and phonology are intrinsically cyclic and local. (Interleaving now also in DM, Embick 2010).
The “derivational residue”

1. Two major problems
 - Opacity
 - Cyclicity

2. Two types of solutions
 - Introduce transderivational faithfulness constraints (Sympathy, O/O) and/or transderivational constraints formulated over faithfulness relations (OT-CC).
 - Modularity: level-ordered cascade of classic OT constraint systems (Stratal OT). Expressions are interpreted incrementally as they are built up, so morphology and phonology are intrinsically cyclic and local. (Interleaving now also in DM, Embick 2010).
Andrew Nevins

- (with Karlos Arregi) *Morphotactics: Basque Auxiliaries and the Structure of Spellout* (in press)

Leading ideas:

1. Locality, restrictiveness.
2. Phonetic grounding, naturalness, markedness.
4. Cross-modular structural parallelism: phonology is *not* different.
Andrew Nevins

- (with Karlos Arregi) *Morphotactics: Basque Auxiliaries and the Structure of Spellout* (in press)

Leading ideas:

1. Locality, restrictiveness.
2. Phonetic grounding, naturalness, markedness.
4. Cross-modular structural parallelism: phonology is *not* different.
Andrew Nevins

- (with Karlos Arregi) *Morphotactics: Basque Auxiliaries and the Structure of Spellout* (in press)

Leading ideas:

1. Locality, restrictiveness.
2. Phonetic grounding, naturalness, markedness.
4. Cross-modular structural parallelism: phonology is *not* different.
Andrew Nevins

- (with Karlos Arregi) *Morphotactics: Basque Auxiliaries and the Structure of Spellout* (in press)

Leading ideas:

1. Locality, restrictiveness.
2. Phonetic grounding, naturalness, markedness.
4. Cross-modular structural parallelism: phonology is *not* different.
How to achieve this?

1. Nevins’ proposal
 - Rules plus (i) constraints that block rules, (ii) constraints that trigger rules.
 - Functional submodules in the morphology: Feature and node deletion → Linearization → Vocabulary Insertion → Movement and Copying

2. Stratal OT
 - Only constraints, cyclically evaluated.
 - Structural submodules in the morphology: Stems and Words.
 - Beyond cross-modular parallelism: constraint-based approaches in phonetic implementation (Flemming), metrics, processing.
How to achieve this?

1. Nevins’ proposal
 - Rules plus (i) constraints that block rules, (ii) constraints that trigger rules.
 - Functional submodules in the morphology: Feature and node deletion → Linearization → Vocabulary Insertion → Movement and Copying

2. Stratal OT
 - Only constraints, cyclically evaluated.
 - Structural submodules in the morphology: Stems and Words.
 - Beyond cross-modular parallelism: constraint-based approaches in phonetic implementation (Flemming), metrics, processing.
How to achieve this?

1. Nevins’ proposal
 - Rules plus (i) constraints that block rules, (ii) constraints that trigger rules.
 - Functional submodules in the morphology: Feature and node deletion → Linearization → Vocabulary Insertion → Movement and Copying

2. Stratal OT
 - Only constraints, cyclically evaluated.
 - Structural submodules in the morphology: Stems and Words.
 - Beyond cross-modular parallelism: constraint-based approaches in phonetic implementation (Flemming), metrics, processing.
How to achieve this?

1. Nevins’ proposal
 - Rules plus (i) constraints that block rules, (ii) constraints that trigger rules.
 - Functional submodules in the morphology: Feature and node deletion → Linearization → Vocabulary Insertion → Movement and Copying

2. Stratal OT
 - Only constraints, cyclically evaluated.
 - Structural submodules in the morphology: Stems and Words.
 - Beyond cross-modal parallelism: constraint-based approaches in phonetic implementation (Flemming), metrics, processing.
How to achieve this?

1. Nevins’ proposal
 - Rules plus (i) constraints that block rules, (ii) constraints that trigger rules.
 - Functional submodules in the morphology: Feature and node deletion → Linearization → Vocabulary Insertion → Movement and Copying

2. Stratal OT
 - Only constraints, cyclically evaluated.
 - Structural submodules in the morphology: Stems and Words.
 - Beyond cross-modal parallelism: constraint-based approaches in phonetic implementation (Flemming), metrics, processing.
How to achieve this?

1. Nevins’ proposal
 - Rules plus (i) constraints that block rules, (ii) constraints that trigger rules.
 - Functional submodules in the morphology: Feature and node deletion \rightarrow Linearization \rightarrow Vocabulary Insertion \rightarrow Movement and Copying

2. Stratal OT
 - Only constraints, cyclically evaluated.
 - Structural submodules in the morphology: Stems and Words.
 - Beyond cross-modular parallelism: constraint-based approaches in phonetic implementation (Flemming), metrics, processing.
How to achieve this?

1. Nevins’ proposal
 - Rules plus (i) constraints that block rules, (ii) constraints that trigger rules.
 - Functional submodules in the morphology: Feature and node deletion \(\rightarrow\) Linearization \(\rightarrow\) Vocabulary Insertion \(\rightarrow\) Movement and Copying

2. Stratal OT
 - Only constraints, cyclically evaluated.
 - Structural submodules in the morphology: Stems and Words.
 - Beyond cross-modular parallelism: constraint-based approaches in phonetic implementation (Flemming), metrics, processing.
Search procedure: a value-seeking (“needy”) element initiates a search for the feature it needs, stops as soon as it finds the closest element bearing the relevant feature, and copies the value of that feature. If it can’t find a feature within the search domain, it defaults to a parametrically specified value.

Relativization parameter determines what values of the harmonic feature count as “relevant”: (a) all values, (b) contrastive values, (c) marked values.

Identity requirement may be imposed on the source and target of feature-copying.

Bounding parameters: (a) limits on search distance, (b) blocking by high-sonority elements.
Nevins’ procedural theory of vowel harmony

1. **Search procedure**: a value-seeking (“needy”) element initiates a search for the feature it needs, stops as soon as it finds the closest element bearing the relevant feature, and copies the value of that feature. If it can’t find a feature within the search domain, it defaults to a parametrically specified value.

2. **Relativization parameter** determines what values of the harmonic feature count as “relevant”: (a) all values, (b) contrastive values, (c) marked values.

3. **Identity requirement** may be imposed on the source and target of feature-copying.

4. **Bounding parameters**: (a) limits on search distance, (b) blocking by high-sonority elements.
Nevins’ procedural theory of vowel harmony

1. **Search procedure**: a value-seeking (“needy”) element initiates a search for the feature it needs, stops as soon as it finds the closest element bearing the relevant feature, and copies the value of that feature. If it can’t find a feature within the search domain, it defaults to a parametrically specified value.

2. **Relativization parameter** determines what values of the harmonic feature count as “relevant”: (a) all values, (b) contrastive values, (c) marked values.

3. **Identity requirement** may be imposed on the source and target of feature-copying.

4. **Bounding parameters**: (a) limits on search distance, (b) blocking by high-sonority elements.
Nevins’ procedural theory of vowel harmony

1. **Search procedure**: a value-seeking (“needy”) element initiates a search for the feature it needs, stops as soon as it finds the closest element bearing the relevant feature, and copies the value of that feature. If it can’t find a feature within the search domain, it defaults to a parametrically specified value.

2. **Relativization parameter** determines what values of the harmonic feature count as “relevant”: (a) all values, (b) contrastive values, (c) marked values.

3. **Identity requirement** may be imposed on the source and target of feature-copying.

4. **Bounding parameters**: (a) limits on search distance, (b) blocking by high-sonority elements.
An OT theory of vowel harmony

1 Phonology negotiates the conflicting claims of syntagmatic and paradigmatic markedness constraints and faithfulness constraints.

- Harmony: *[αF][–αF]
- Paradigmatic markedness: *[μF]
- Faithfulness: IDENTSTEM(F), IDENT-σ₁(F)...

2 Constraints may be conjoined.

3 Cyclic evaluation.

Kiparsky & Pajusalu 2003
An OT theory of vowel harmony

1. Phonology negotiates the conflicting claims of syntagmatic and paradigmatic markedness constraints and faithfulness constraints.
 - Harmony: *[αF][–αF]
 - Paradigmatic markedness: *[μF]
 - Faithfulness: IDENTSTEM(F), IDENT-σ₁(F)...

2. Constraints may be conjoined.

3. Cyclic evaluation.

Kiparsky & Pajusalu 2003
An OT theory of vowel harmony

1. Phonology negotiates the conflicting claims of syntagmatic and paradigmatic markedness constraints and faithfulness constraints.
 - Harmony: *[αF][–αF]
 - Paradigmatic markedness: *[μF]
 - Faithfulness: $\text{IDENT}_{\text{STEM}}(F)$, $\text{IDENT-}\sigma_{1}(F)$

2. Constraints may be conjoined.

3. Cyclic evaluation.

Kiparsky & Pajusalu 2003
An OT theory of vowel harmony

1. Phonology negotiates the conflicting claims of syntagmatic and paradigmatic markedness constraints and faithfulness constraints.
 - Harmony: *[\(\alpha F\)][–\(\alpha F\)]
 - Paradigmatic markedness: *\([\mu F]\)
 - Faithfulness: IDENTSTEM(F), IDENT-\(\sigma_1\)(F)...

2. Constraints may be conjoined.

3. Cyclic evaluation.

Kiparsky & Pajusalu 2003
An OT theory of vowel harmony

1. Phonology negotiates the conflicting claims of syntagmatic and paradigmatic markedness constraints and faithfulness constraints.
 - Harmony: *[\alpha F][-\alpha F]
 - Paradigmatic markedness: *[\mu F]
 - Faithfulness: IDENTSTEM(F), IDENT-\sigma_1(F)...

2. Constraints may be conjoined.

3. Cyclic evaluation.

Kiparsky & Pajusalu 2003
Phonology negotiates the conflicting claims of syntagmatic and paradigmatic markedness constraints and faithfulness constraints.

- Harmony: $*[\alpha F][-\alpha F]$
- Paradigmatic markedness: $*[\mu F]$
- Faithfulness: $\text{IDENT}_{\text{STEM}}(F), \text{IDENT}-\sigma_1(F)\ldots$

Constraints may be conjoined.

Cyclic evaluation.

Kiparsky & Pajusalu 2003
• järje-st-el-mä-llis-ty-ttä-mä-ttööm-yyde-llä-nsä-käänt-kö-hän
‘maybe not-even with his failure to have systematized?’

• suunn-it-el-ma-llis-tu-tta-ma-ttom-uude-llä-nsa-kaan-kö-han
‘maybe not-even with his failure to have caused planning to be introduced?’

• es-it-el-mä-llis-ty-ttä-mä-ttööm-yyde-llä-nsä-käänt-kö-hän
‘maybe not-even with his failure to have lecturing caused to be introduced?’
The vowel system

<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>o</th>
<th>a</th>
<th>y</th>
<th>ö</th>
<th>ä</th>
<th>i</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Round</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>High</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Low</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>

- **Harmony**: *u, o, a* and *y, ö, ä* don’t co-occur.
 - **Stems**: *pouta* ‘fair weather’, *pöytä* ‘table’, *poutä*, *poytä*, *poyta*, *pöuta*...
 - **Suffixes**: *maa-ta* ‘land’ (Part.Sg.), *pää-tä* ‘head’ (Part.Sg.)
The vowel system

<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>o</th>
<th>a</th>
<th>y</th>
<th>ö</th>
<th>ä</th>
<th>i</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Round</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>High</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Low</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

- **Harmony:** u, o, a and y, ö, ä don’t co-occur.
- **Stems:** *pouta* ‘fair weather’, *pöytä* ‘table’, *poutä*, *poytä*, *poyta*, *pöuta* . . .
- **Suffixes:** *maa-ta* ‘land’ (Part.Sg.), *pää-tä* ‘head’ (Part.Sg.)
The vowel system

<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>o</th>
<th>a</th>
<th>y</th>
<th>ö</th>
<th>ä</th>
<th>i</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Round</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>High</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Low</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

- **Harmony:** *u, o, a* and *y, ö, ä* don’t co-occur.
- **Stems:** *pouta* ‘fair weather’, *pöytä* ‘table’, *poutä*, *poytä*, *poyta*, *pöuta* . . .
- **Suffixes:** *maa-ta* ‘land’ (Part.Sg.), *pää-tä* ‘head’ (Part.Sg.)
The neutral vowels \(i\), \(e\) in Finnish

- Unpaired in the underlying vowel inventory. Do not undergo suffixal harmony.
- Transparent to suffixal harmony, e.g. \(tarina\) ‘tale’, \(tärinä\) ‘vibration’ (*tarinä*, *tärina*)
- Freely co-occur with back vowels in stems, e.g. \(piina\) ‘torture’, \(viitta\) ‘cloak’
- Trigger front harmony in suffixes, e.g. \(pii-nä\) ‘silicon’ (Ess.Sg.), \(viit-tä\) ‘five’ (Part.Sg.)
The neutral vowels i, e in Finnish

- Unpaired in the underlying vowel inventory. Do not undergo suffixal harmony.
- Transparent to suffixal harmony, e.g. *tarina* ‘tale’, *tärinä* ‘vibration’ (*tarinä, *tärina*)
- Freely co-occur with back vowels in stems, e.g. *piina* ‘torture’, *viitta* ‘cloak’
- Trigger front harmony in suffixes, e.g. *pii-nä* ‘silicon’ (Ess.Sg.), *viit-tä* ‘five’ (Part.Sg.)
The neutral vowels *i*, *e* in Finnish

- Unpaired in the underlying vowel inventory. Do not undergo suffixal harmony.
- Transparent to suffixal harmony, e.g. *tarina* ‘tale’, *tärinä* ‘vibration’ (*tarinä*, *tärina*)
- Freely co-occur with back vowels in stems, e.g. *piina* ‘torture’, *viitta* ‘cloak’
- Trigger front harmony in suffixes, e.g. *pii-nä* ‘silicon’ (Ess.Sg.), *viit-tä* ‘five’ (Part.Sg.)
The neutral vowels i, e in Finnish

- Unpaired in the underlying vowel inventory. Do not undergo suffixal harmony.

- Transparent to suffixal harmony, e.g. *tarina* ‘tale’, *tärinä* ‘vibration’ (*tronä*, *trina*)

- Freely co-occur with back vowels in stems, e.g. *piina* ‘torture’, *viitta* ‘cloak’

- Trigger front harmony in suffixes, e.g. *pii-nä* ‘silicon’ (Ess.Sg.), *viit-tä* ‘five’ (Part.Sg.)
Text frequency of Finnish vowels

<table>
<thead>
<tr>
<th>Vowel</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>27</td>
<td>24.97%</td>
</tr>
<tr>
<td>a</td>
<td>23</td>
<td>22.88%</td>
</tr>
<tr>
<td>e</td>
<td>16</td>
<td>15.49%</td>
</tr>
<tr>
<td>u</td>
<td>10</td>
<td>11.91%</td>
</tr>
<tr>
<td>o</td>
<td>10</td>
<td>10.67%</td>
</tr>
<tr>
<td>ä</td>
<td>9</td>
<td>7.60%</td>
</tr>
<tr>
<td>y</td>
<td>3</td>
<td>4.75%</td>
</tr>
<tr>
<td>ö</td>
<td>1</td>
<td>1.78%</td>
</tr>
</tbody>
</table>
Finnish constraint ranking

1. *ɨ, *

2. MARKEDHARMONY: *[αBack][–αBack] & *[ɛBack]: a domain cannot contain both a disharmonic vowel and a marked vowel.

3. FAITHFULNESS:
 - IDENTSTEM(BACK): An input [αBack] vowel in a Stem must be [αBack] in the output.
 - IDENT-σ₁(Back): An initial input [αBack] vowel must be [αBack] in the output.

4. HARMONY: *[αBack][–αBack]

This ranking gives Finnish, others generate an empirically supported factorial typology.
Finnish constraint ranking

1. *i, *y

2. **MARKED HARMONY**: *[αBack][−αBack] & *[μBack]: a domain cannot contain both a disharmonic vowel and a marked vowel.

3. **FAITHFULNESS**:
 - **IDENTSTEM(Back)**: An input [αBack] vowel in a Stem must be [αBack] in the output.
 - **IDENT-σ₁(Back)**: An initial input [αBack] vowel must be [αBack] in the output.

4. **HARMONY**: *[αBack][−αBack]

This ranking gives Finnish, others generate an empirically supported factorial typology.
Finnish constraint ranking

1. *ɨ, *γ

2. **MARKED HARMONY**: *[αBack][–αBack] & *[μBack]: a domain cannot contain both a disharmonic vowel and a marked vowel.

3. **FAITHFULNESS**:
 - **IDENTSTEM(Back)**: An input [αBack] vowel in a Stem must be [αBack] in the output.
 - **IDENT-σ₁(Back)**: An initial input [αBack] vowel must be [αBack] in the output.

4. **HARMONY**: *[αBack][–αBack]

This ranking gives Finnish, others generate an empirically supported factorial typology.
Finnish constraint ranking

1. *ɨ, *ɤ

2. **MARKED HARMONY**: *[^ Back][−^ Back] & *[µ Back]: a domain cannot contain both a disharmonic vowel and a marked vowel.

3. **FAITHFULNESS**:
 - **IDENTSTEM(Back)**: An input [^ Back] vowel in a Stem must be [^ Back] in the output.
 - **IDENT-σ₁(Back)**: An initial input [^ Back] vowel must be [^ Back] in the output.

4. **HARMONY**: *[^ Back][−^ Back]

This ranking gives Finnish, others generate an empirically supported factorial typology.
Finnish constraint ranking

1. *i, *γ
2. Marked Harmony: *[αBack][–αBack] & *[µBack]: a domain cannot contain both a disharmonic vowel and a marked vowel.
3. Faithfulness:
 - IDENT STem(Back): An input [αBack] vowel in a Stem must be [αBack] in the output.
 - IDENT-σ₁ (Back): An initial input [αBack] vowel must be [αBack] in the output.
4. Harmony: *[αBack][–αBack]

This ranking gives Finnish, others generate an empirically supported factorial typology.
Finnish constraint ranking

1. *į, *γ

2. **MARKED HARMONY**: *[αBack][–αBack] & *[µBack]: a domain cannot contain both a disharmonic vowel and a marked vowel.

3. **FAITHFULNESS**:
 - **IDENT STEM (Back)**: An input [αBack] vowel in a Stem must be [αBack] in the output.
 - **IDENT-σ₁ (Back)**: An initial input [αBack] vowel must be [αBack] in the output.

4. **HARMONY**: *[αBack][–αBack]

This ranking gives Finnish, others generate an empirically supported factorial typology.
Stems are subject only to **MARKEDHARMONY**

MARKEDHARMONY: a domain cannot contain both a marked vowel and a disharmonic vowel.

```
* [ aD  äDM ]α
✓ [ iD  aD  ]α
✓ [ i    äM  ]α
✓ [ aD  iD  aD  ]α
* [ aD  iD  äM  ]α
* [ äDM iD  aD  ]α
✓ [ äM  i    äM  ]α
```
Suffixes undergo also HARMONY

<table>
<thead>
<tr>
<th>Input</th>
<th>Candidates</th>
<th>*ί, *γ</th>
<th>MARKEDHARMONY</th>
<th>IDENTSTEM(B)</th>
<th>HARMONY</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ί]a</td>
<td>ia</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>ιά</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[ία]</td>
<td>ια</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>ιὰ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[ίά]</td>
<td>ια</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>ιά</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[αι]a</td>
<td>αια</td>
<td></td>
<td></td>
<td></td>
<td>**</td>
</tr>
<tr>
<td>αιά</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>αία</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>αια</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>**</td>
</tr>
<tr>
<td>αια</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>αια</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>**</td>
</tr>
<tr>
<td>αια</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>

Note: * indicates a conflict with the HARMONY constraint.
1. Harmony applies in suffixes and within roots.

2. A needy vowel seeks a contrastive feature to its left (‘needy’ ≈ ‘unspecified’).

3. Transparent i, e are excluded from the search.

4. If the search fails, default [–Back] is assigned.

5. Non-initial stem syllables also undergo harmony (evidence from language games). Disharmony handled by specifying vowels as non-needy.
Harmony applies in suffixes and within roots.

A needy vowel seeks a contrastive feature to its left (‘needy’ ≈ ‘unspecified’).

Transparent i, e are excluded from the search.

If the search fails, default [–Back] is assigned.

Non-initial stem syllables also undergo harmony (evidence from language games). Disharmony handled by specifying vowels as non-needy.
1. Harmony applies in suffixes and within roots.
2. A needy vowel seeks a contrastive feature to its left ('needy' ≈ 'unspecified').
3. Transparent \(i, e \) are excluded from the search.
4. If the search fails, default \([-\text{Back}]\) is assigned.
5. Non-initial stem syllables also undergo harmony (evidence from language games). Disharmony handled by specifying vowels as non-needy.
1. Harmony applies in suffixes and within roots.
2. A needy vowel seeks a contrastive feature to its left ('needy' ≈ 'unspecified').
3. Transparent i, e are excluded from the search.
4. If the search fails, default [–Back] is assigned.
5. Non-initial stem syllables also undergo harmony (evidence from language games). Disharmony handled by specifying vowels as non-needy.
Harmony applies in suffixes and within roots.

A needy vowel seeks a contrastive feature to its left (‘needy’ ≈ ‘unspecified’).

Transparent i, e are excluded from the search.

If the search fails, default [–Back] is assigned.

Non-initial stem syllables also undergo harmony (evidence from language games). Disharmony handled by specifying vowels as non-needy.
Argument 1: stem harmony

1. Non-standard speakers nativize disharmonic stems:
 \textit{Peugeot} \rightarrow \textit{pösö}, \textit{trotyyli} \rightarrow \textit{rotuli} ‘TNT’, \textit{olympia-} \rightarrow \textit{olumpia-}, \textit{pulityyri} \rightarrow \textit{pulituuri} ‘furniture polish’.
 Never \textit{Kiina} \rightarrow \textit{*Kiinä} ‘China’, \textit{metro} \rightarrow \textit{*metrõ}.

2. Ranking MH \gg IDSTEM(B) \gg H excludes \textit{Peugeot}, \textit{trotyyli}, but not \textit{Kiina, metro}.

3. The search-and-copy approach doesn’t have a harmony constraint. It must specify the distribution of neediness by a lookahead rule: “a stem vowel is needy only if its needs will be satisfied by copying, not by default assignment.”
Argument 1: stem harmony

1. Non-standard speakers nativize disharmonic stems:

 \[\text{Peugeot} \rightarrow \text{pösö}, \text{trotyyli} \rightarrow \text{rotuli} \text{ ‘TNT’}, \text{olympia-} \rightarrow \text{olumpia-}, \text{pulityyri} \rightarrow \text{pulituuri} \text{ ‘furniture polish’}. \]

 Never \text{Kiina} \rightarrow *\text{Kiinä} ‘China’, \text{metro} \rightarrow *\text{metrö}.

2. Ranking MH \gg \text{IDSTEM(B)} \gg H excludes \text{Peugeot, trotyyli}, but not \text{Kiina, metro}.

3. The search-and-copy approach doesn’t have a harmony constraint. It must specify the distribution of neediness by a lookahead rule: “a stem vowel is needy only if its needs will be satisfied by copying, not by default assignment.”
Argument 1: stem harmony

1. Non-standard speakers nativize disharmonic stems:
 \(\text{Peugeot} \rightarrow pösö, \text{trotyyli} \rightarrow \text{rotuli} \) ‘TNT’,
 \(olympia- \rightarrow \text{olumpia-}, \text{pulityyri} \rightarrow \text{pulituuri} \) ‘furniture polish’.
 Never \(\text{Kiina} \rightarrow *\text{Kiinä} \) ‘China’, \(\text{metro} \rightarrow *\text{metrö} \).

2. Ranking \(\text{MH} \gg \text{IDSTEM}(B) \gg \text{H} \) excludes \(\text{Peugeot}, \text{trotyyli} \), but not \(\text{Kiina}, \text{metro} \).

3. The search-and-copy approach doesn’t have a harmony constraint. It must specify the distribution of neediness by a lookahead rule: “a stem vowel is needy only if its needs will be satisfied by copying, not by default assignment.”
Argument 2: *i,e* don’t trigger harmony from monosyllabic C-roots

<table>
<thead>
<tr>
<th>Word</th>
<th>Meaning</th>
<th>Word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>itk-u</td>
<td>‘crying’</td>
<td>itke-sk-el-y</td>
<td>‘crying’ (durative)</td>
</tr>
<tr>
<td>hiill-os</td>
<td>‘embers’</td>
<td>piene-nn-ös</td>
<td>‘reduction’</td>
</tr>
<tr>
<td>tek-o</td>
<td>‘deed’</td>
<td>tee+sk+ent+el+y</td>
<td>‘pretending’</td>
</tr>
<tr>
<td>pit-uus</td>
<td>‘length’</td>
<td>pid-emm-yys</td>
<td>‘greater length’</td>
</tr>
<tr>
<td>pien-uus</td>
<td>‘small size’</td>
<td>pien-emm-yys</td>
<td>‘smaller size’</td>
</tr>
</tbody>
</table>

Analysis: the minimal stem is disyllabic, so the Root+Suffix combination is the first cyclic constituent.

- \((\text{itk-u})_\omega\) (like monomorphemic *letku* ‘hose’)
- \(((\text{itk-esk-el})_\omega\cdot\text{y})_\omega\)
Non-needy (fully specified) vowels can harmonize, as predicted by constraint-based theory.

- moinen ‘such’
- kum+moinen ‘which kind of?’
- mim+moinen ‘what kind of’
- täm+möinen ‘this kind of’

- moinen has underlying [+Back] /o/
- kum+moinen [+Back] after [+Back]
- mim+moinen [+Back] after neutral [–Back]
- täm+möinen [–Back] after harmonic [–Back]

- Similar examples in Hungarian VH (Vago).
- Consonant assimilation is also applicable to fully specified vowels (Wetzels & Mascaró 2001).
- Constraint-based theory unifies VH with other assimilation processes.
Argument 4: Seto/Võru

- Harmony like Finnish, but with two extra vowels /ɨ/, /ʉ/

<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>o</th>
<th>a</th>
<th>ɨ</th>
<th>ʉ</th>
<th>ü</th>
<th>ö</th>
<th>ä</th>
<th>a</th>
<th>i</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Round</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>High</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Low</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>

- /ɨ/ back harmonic, occurs only in initial syllables.
- /ʉ/ occurs in any syllable, reduced to [ə] non-initially.
- /e/ is a neutral in initial syllables, front harmonic elsewhere.
- /o/ is opaque.
- /ö/ occurs only in initial syllables.
Argument 4: Seto/Võru

- Harmony like Finnish, but with two extra vowels /ɪ/, /ʌ/

<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>o</th>
<th>a</th>
<th>i</th>
<th>ʌ</th>
<th>ü</th>
<th>ö</th>
<th>ä</th>
<th>ä</th>
<th>ë</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Round</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>High</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Low</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

- /ɪ/ back harmonic, occurs only in initial syllables.
- /ʌ/ occurs in any syllable, reduced to [ə] non-initially.
- /e/ is a neutral in initial syllables, front harmonic elsewhere.
- /o/ is opaque.
- /ö/ occurs only in initial syllables.
Argument 4: Seto/Võru

- Harmony like Finnish, but with two extra vowels /ɪ/, /ɔ/%

<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>o</th>
<th>a</th>
<th>i</th>
<th>ɔ</th>
<th>ü</th>
<th>ö</th>
<th>ạ</th>
<th>i</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Round</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>High</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Low</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>

- /ɪ/ back harmonic, occurs only in initial syllables.
- /ɔ/ occurs in any syllable, reduced to [ə] non-initially.
- /e/ is a neutral in initial syllables, front harmonic elsewhere.
- /o/ is opaque.
- /ö/ occurs only in initial syllables.
Argument 4: Seto/Võru

- Harmony like Finnish, but with two extra vowels /ɨ/, /ɤ/.

<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>o</th>
<th>a</th>
<th>i</th>
<th>ɤ</th>
<th>ü</th>
<th>ö</th>
<th>ä</th>
<th>i</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Round</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>High</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Low</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>

- /ɨ/ back harmonic, occurs only in initial syllables.
- /ɤ/ occurs in any syllable, reduced to [ə] non-initially.
- /e/ is a neutral in initial syllables, front harmonic elsewhere.
- /o/ is opaque.
- /ö/ occurs only in initial syllables.
Argument 4: Seto/Võru

- Harmony like Finnish, but with two extra vowels /ɨ/, /ɤ/

<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>o</th>
<th>a</th>
<th>ɨ</th>
<th>ɤ</th>
<th>ü</th>
<th>ö</th>
<th>ǣ</th>
<th>ą</th>
<th>i</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Round</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>High</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Low</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

- /ɨ/ back harmonic, occurs only in initial syllables.
- /ɤ/ occurs in any syllable, reduced to [ə] non-initially.
- /e/ is a neutral in initial syllables, front harmonic elsewhere.
- /o/ is opaque.
- /ö/ occurs only in initial syllables.
Argument 4: Seto/Võru

- Harmony like Finnish, but with two extra vowels /ɪ/, /ə/.

<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>o</th>
<th>a</th>
<th>i</th>
<th>ᵃ</th>
<th>ü</th>
<th>ŏ</th>
<th>ä</th>
<th>å</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Round</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>High</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Low</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>

- /ɪ/ back harmonic, occurs only in initial syllables.
- /ə/ occurs in any syllable, reduced to [ə] non-initially.
- /e/ is a neutral in initial syllables, front harmonic elsewhere.
- /o/ is opaque.
- /ö/ occurs only in initial syllables.
Initial /i/ and /ɪ/ are distinctive, /ɪ/ triggers harmony

1. *sina ‘word’, klībisɣ-ma ‘to rattle’
 *sinä ‘you’, libise-mä ‘to flutter’, silmä ‘eye’s’, hinneq ‘fiber’
 *ilma ‘without’, minnu ‘me’, hinnɣq ‘grade’
 *CiCä, *CiCö, *CiCe...

2. MH predicts this. Search procedure has a problem with identifying the source.
 - Search for distinctive values excludes grammatical CiCa, CiCu, CiCɣ.
 - Search for marked values fails to exclude either *CuCä, *CaCü, *CɣCe..., or *CäCu, *CüCa, *CöCɣ..., both ungrammatical.
Initial /i/ and /ɪ/ are distinctive, /ɪ/ triggers harmony

1. *sīna* ‘word’, *klībisɔ*-ma ‘to rattle’
 sinä ‘you’, *libise-ма* ‘to flutter’, *silmä* ‘eye’s’, *hinneq* ‘fiber’
 ilmɑ ‘without’, *minnu* ‘me’, *hinnaq* ‘grade’
 CiCä, *CiCö*, *CiCe*...

2. MH predicts this. Search procedure has a problem with identifying the source.

 - Search for distinctive values excludes grammatical *CiCa*, *CiCu*, *CiCɨ*.
 - Search for marked values fails to exclude either *CuCä*, *CaCū*, *CɨCe*..., or *CāCu*, *CūCa*, *CőCɨ*..., both ungrammatical.
Initial /i/ and /ɪ/ are distinctive, /ɪ/ triggers harmony

1. sina ‘word’, klībisγ-ma ‘to rattle’
 sinä ‘you’, libise-mā ‘to flutter’, silmā ‘eye’s’, hinneq ‘fiber’
 ilma ‘without’, minnu ‘me’, hinnγq ‘grade’
 *CīCā, *CīCō, *CīCe...

2. MH predicts this. Search procedure has a problem with identifying the source.
 - Search for distinctive values excludes grammatical CiCa,
 CiCu, CiCy.
 - Search for marked values fails to exclude either *CuCā,
 *CaCū, *CyCe..., or *CāCu, *CūCa, *CōCy..., both ungrammatical.
Initial /i/ and /ɨ/ are distinctive, /ɨ/ triggers harmony

1. sīna ‘word’, klībisɣ-ma ‘to rattle’
 sinā ‘you’, libise-mā ‘to flutter’, silmā ‘eye’s’, hinneq ‘fiber’
 ilma ‘without’, minnu ‘me’, hinnγq ‘grade’
 *CiCä, *CiCö, *CiCe...

2. MH predicts this. Search procedure has a problem with identifying the source.
 - Search for distinctive values excludes grammatical CiCa, CiCu, CiCɣ.
 - Search for marked values fails to exclude either *CuCä, *CaCû, *CɣCe..., or *CäCu, *CûCa, *CöCɣ..., both ungrammatical.
The domain of harmony is the prosodic word

<table>
<thead>
<tr>
<th>Harmony (local cases)</th>
<th>-t-Deletion in Part.Pl.</th>
</tr>
</thead>
<tbody>
<tr>
<td>[+Back]</td>
<td>total hits</td>
</tr>
<tr>
<td>kúvernmèntti</td>
<td>80.25%</td>
</tr>
<tr>
<td>káramèlli</td>
<td>71.44%</td>
</tr>
<tr>
<td>árkkitèhti</td>
<td>55.42%</td>
</tr>
<tr>
<td>háralèhi</td>
<td>20.11%</td>
</tr>
<tr>
<td>kúriiiri</td>
<td>100.00%</td>
</tr>
<tr>
<td>bákteeri</td>
<td>99.99%</td>
</tr>
<tr>
<td>fákiiri</td>
<td>99.89%</td>
</tr>
<tr>
<td>kálenteri</td>
<td>98.78%</td>
</tr>
<tr>
<td>ártikkelli</td>
<td>99.21%</td>
</tr>
</tbody>
</table>

- V, V: lexical accents. Analysis: monomorphemic words consisting of two full feet are optionally prosodic compounds, e.g. (kúverne)₀(mèntti)₀, (kára)₀(mèlli)₀ (Kiparsky 2003).
Conceptual advantages

1. The computation need not refer to “distinctiveness”, an inherently global property.
2. Unifies harmony with other assimilation processes.
3. Relies on independently motivated prosodic domains.
Conceptual advantages

1. The computation need not refer to “distinctiveness”, an inherently global property.
2. Unifies harmony with other assimilation processes.
3. Relies on independently motivated prosodic domains.
Conceptual advantages

1. The computation need not refer to “distinctiveness”, an inherently global property.
2. Unifies harmony with other assimilation processes.
3. Relies on independently motivated prosodic domains.
Basque clitics

1 Basic order of clitics in the auxiliary is Abs – T – Dat – Erg, the reverse of the normal Subject – Indirect Object – Direct Object order of arguments.

2 CASEALIGNMENT
A clitic C₁ c-commands C₂ iff C₁’s Th-role outranks C₂’s Th-role.
Basque clitics

1 Basic order of clitics in the auxiliary is Abs – T – Dat – Erg, the reverse of the normal Subject – Indirect Object – Direct Object order of arguments.

2 CASEALIGNMENT
A clitic C_1 c-commands C_2 iff C_1’s Th-role outranks C_2’s Th-role.
1. Basic order of clitics in the auxiliary is Abs – T – Dat – Erg, the reverse of the normal Subject – Indirect Object – Direct Object order of arguments.

2. \[
 \text{Abs} \rightarrow \text{T} \rightarrow \text{Dat} \rightarrow \text{Erg}
 \]

3. **CASEALIGNMENT**
 A clitic C_1 c-commands C_2 iff C_1’s Th-role outranks C_2’s Th-role.
Second position requirement

1. **Noninitiality:**
 T in a finite verb cannot be the leftmost morpheme within the word.

2. **Enclisis:**
 Clitics are adjoined to the right of their host T.
Second position requirement

1 \textbf{NONINITIALITY:}\n\hspace{10pt} T in a finite verb cannot be the leftmost morpheme within the word.

2 \textbf{ENCLISIS:}\n\hspace{10pt} Clitics are adjoined to the right of their host T.
<table>
<thead>
<tr>
<th>Pres + Abs.1Sg + Erg.2Sg</th>
<th>NONINITIALITY</th>
<th>ENCLISIS</th>
<th>CASEALIGNMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. *a-t-su T-1Sg-2Sg</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. ☞ n-a-su 1Sg-T-2Sg</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. *n-su-a 1Sg-2Sg-T</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. *a-su-t T-2Sg-1Sg</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>e. *s-a-t 2Sg-T-1Sg</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>f. *s-n-a 2Sg-1Sg-T</td>
<td>**</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>
Morphological dissimilation

Delete 1pl.Abs/1pl.Dat in context of 2.Erg (Ondarru)

1 *2/1PL
 An auxiliary cannot contain both a first plural clitic and a second person clitic.

2 MAX-2P
 A second person argument must correspond to a clitic (or: it must agree).
Morphological dissimilation

Delete 1pl.Abs/1pl.Dat in context of 2.Erg (Ondarru)

1. \(^*2/1\text{PL} \)
 An auxiliary cannot contain both a first plural clitic and a second person clitic.

2. MAX-2P
 A second person argument must correspond to a clitic (or: it must agree).
The proclitic morpheme $d(o)$- is assumed to mark present indicative (Trask 1977, 1997, Donohue 2004); the T head to which it is attached is unspecified for tense.

A&N treat it as a featureless epenthetic clitic, inserted to satisfy a morphological constraint which requires that Tense must not begin a word. d-insertion is bled by a rule which moves an ergative clitic to the beginning of the auxiliary (Enclitic Metathesis). By stipulation, Enclitic Metathesis only applies in the past tense; so d-insertion only applies in the present tense.
The proclitic morpheme $d(o)$- is assumed to mark present indicative (Trask 1977, 1997, Donohue 2004); the T head to which it is attached is unspecified for tense.

A&N treat it as a featureless epenthetic clitic, inserted to satisfy a morphological constraint which requires that Tense must not begin a word. d-insertion is bled by a rule which moves an ergative clitic to the beginning of the auxiliary (Enclitic Metathesis). By stipulation, Enclitic Metathesis only applies in the past tense; so d-insertion only applies in the present tense.
do-su ‘Present-2.Sg.’ is multiply ambiguous

1 Su-k gu-Ø ikus-i do-su (Present + Abs.1Pl + Erg.2Sg)
you.Sg-E us-A see-Prf Present-2Sg
‘You(Sg) have seen us.’

2 Su-k gu-ri emo-n do-su (Present + Dat.1Pl + Erg.2Sg)
you.Sg-E us-D give-Prf Present-2Sg
‘You(Sg) have given it to us.’

3 Gu-ri su-Ø gusta-ten do-su (Present + Abs.2Sg + Dat.1Pl)
We-Dat you.Sg.Abs like-Perf Pres-2Sg
‘We like you(Sg.)’
do-su ‘Present-2.Sg.’ is multiply ambiguous

1. Su-k gu-Ø ikus-i do-su (Present + Abs.1Pl + Erg.2Sg)
 you.Sg-E us-A see-Prf Present-2Sg
 ‘You(Sg) have seen us.’

2. Su-k gu-ri emo-n do-su (Present + Dat.1Pl + Erg.2Sg)
 you.Sg-E us-D give-Prf Present-2Sg
 ‘You(Sg) have given it to us.’

3. Gu-ri su-Ø gusta-ten do-su (Present + Abs.2Sg + Dat.1Pl)
 We-Dat you.Sg.Abs like-Perf Pres-2Sg
 ‘We like you(Sg.)’
do-su ‘Present-2.Sg.’ is multiply ambiguous

1. Su-k gu-∅ ikus-i do-su (Present + Abs.1Pl + Erg.2Sg)
 you.Sg-E us-A see-Prf Present-2Sg
 ‘You(Sg) have seen us.’

2. Su-k gu-ri emo-n do-su (Present + Dat.1Pl + Erg.2Sg)
 you.Sg-E us-D give-Prf Present-2Sg
 ‘You(Sg) have given it to us.’

3. Gu-ri su-∅ gusta-ten do-su (Present + Abs.2Sg + Dat.1Pl)
 We-Dat you.Sg.Abs like-Perf Pres-2Sg
 ‘We like you(Sg.)’
dosu ‘we-Dat (like) you-Abs’ (Present)

<table>
<thead>
<tr>
<th>FaithTense</th>
<th>MAX-2p</th>
<th>*2/1Pl</th>
<th>CASEAlignment</th>
<th>ENGLISH</th>
<th>NONINITIALITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present + Abs.2Sg + Dat.1Pl → d-o-su</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Present</th>
<th>*s-a-sku</th>
<th>*a-sku</th>
<th>*a-su</th>
<th>*do-su</th>
<th>*sku-a</th>
<th>*s-a</th>
<th>*do-su-a</th>
<th>*do-sku-su</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a.</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1b.</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1c.</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1d.</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1e.</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1f.</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1g.</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1h.</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Past + Abs.2Sg + Dat.1Pl → s-endo-n</td>
<td>NONINITIALITY</td>
<td>ENGLISH</td>
<td>2/1P</td>
<td>MAX-2P</td>
<td>FAITH TENSE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--------------</td>
<td>--------</td>
<td>------</td>
<td>--------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1a. *s-endo-sku-n 2Sg-T-Dat.1Pl</td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1b. *endo-sku-n Past-Dat.1Pl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1c. *endo-su-n Past-2Sg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1d. *d-endo-su-n Pres-Past-2Sg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1e. s-endo-n 2Sg-Past</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1f. *d-endo-sku-n Pres-Past-Dat.1Pl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
sendu(n) ‘you-Erg (saw) us-Abs’

<table>
<thead>
<tr>
<th>Past + Abs.1Pl + Erg.2Sg → s-sendu(-n) ‘you -ed us’</th>
<th>NONINITIALITY</th>
<th>ENCLISIS</th>
<th>*2/1PL</th>
<th>MAX-2P</th>
<th>FAITH TENSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a. *g-sendu-su-n 1Pl-Past-2Sg</td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1b. *sendu-su-n Past-2Sg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1c. *sendu-gu-n Past-1Pl</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1d. *d-sendu-su-n Pres-Past-2Sg</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>1e. ☞ s-sendu-n 2Sg-Past</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1f. *g-sendu-n 1Pl-Past</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1g. *d-sendu-gu-n Pres-Past-1Pl</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

Note: The table indicates the satisfaction of constraints for different verb forms, with the asterisk (*) marking the constraints satisfied.
y is translucent

<table>
<thead>
<tr>
<th></th>
<th>[+Back]</th>
<th>total hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>trotyyli</td>
<td>58.71%</td>
<td>1,669</td>
</tr>
<tr>
<td>marttyyri</td>
<td>56.35%</td>
<td>3,110</td>
</tr>
<tr>
<td>vampyyri</td>
<td>44.06%</td>
<td>32,692</td>
</tr>
<tr>
<td>kalkyyli</td>
<td>20.66%</td>
<td>1,113</td>
</tr>
<tr>
<td>analyysi</td>
<td>17.65%</td>
<td>1,414,089</td>
</tr>
<tr>
<td>karikatyyri</td>
<td>4.63%</td>
<td>9,572</td>
</tr>
</tbody>
</table>
Other vowels are opaque

<table>
<thead>
<tr>
<th>Name</th>
<th>Percentage</th>
<th>Total Hits</th>
</tr>
</thead>
<tbody>
<tr>
<td>monttööri</td>
<td>0.00%</td>
<td>142</td>
</tr>
<tr>
<td>jonglööri</td>
<td>0.04%</td>
<td>970</td>
</tr>
<tr>
<td>amatööri</td>
<td>0.27%</td>
<td>68,941</td>
</tr>
<tr>
<td>kuvernoöri</td>
<td>0.01%</td>
<td>10,234</td>
</tr>
<tr>
<td>miljardööri</td>
<td>0.00%</td>
<td>14,553</td>
</tr>
<tr>
<td>vulgääri</td>
<td>1.02%</td>
<td>683</td>
</tr>
<tr>
<td>afääri</td>
<td>0.79%</td>
<td>511</td>
</tr>
<tr>
<td>karriääri</td>
<td>0.24%</td>
<td>837</td>
</tr>
<tr>
<td>atmosfääri</td>
<td>0.05%</td>
<td>18,819</td>
</tr>
<tr>
<td>miljonääri</td>
<td>0.00%</td>
<td>33,532</td>
</tr>
<tr>
<td>syaani</td>
<td>100.00%</td>
<td>2,027</td>
</tr>
<tr>
<td>tyranni</td>
<td>99.98%</td>
<td>11,730</td>
</tr>
</tbody>
</table>