Don’t measure height with a stopwatch:
What ‘laboratory linguistics’ is(n’t) good for

Colin Phillips
Department of Linguistics
Neuroscience & Cognitive Science Program
University of Maryland

languagescience.umd.edu
How I became a psycholinguist

Fall 1991: semantics seems cool!

Spring 1993: morphosyntax of obscure Papuan language

Spring 1995: learning to use slides

Summer 1996: (mostly armchair) psycholinguistics
Linguistics + Brain & Cognitive Science partnership

NSF-funded Research Training Grant (‘RTG Program’), 1992-8

Students from each department added ~1 year of training in the other dept.

NSF supported US students
MIT supported international students to do the same (thank you!)

What we learned then is more routine nowadays for linguistics students.
Linguistics looks quite different now than 20 years ago.
... but other fields don’t look at linguistics much differently than 20 years ago.
Language Science @ UMd

200 faculty, PhD students, researchers
12 departments & centers
Collaborative research networks
Courses, talks, outreach
Annual 2-week ‘Winter Storm’ event
Links to technology, education, clinical

Different than 20 years ago:
Students have broader skill-set
Broader network, goals

Same as 20 years ago:
Seeking reciprocal links, inclusiveness
Linguistics is a hard sell

Trying to put linguistics at center of conversations about language
A couple of things that I have learned

1. Don’t say “I will never work on X”
2. Success and speed are overrated (in language use)
Rule Learning by Seven-Month-Old Infants

Linguistic Experience Alters Phonetic Perception in Infants by 6 Months of Age

PATRICIA K. KUHL,* KAREN A. WILLIAMS, FRANCISCO LACERDA, KENNETH O. DOMINIQUE

Sentence Perception as an Interactive Parallel Process

Abstract The restoration of disrupted words to their original form in a sentence shadowing task

Brain Activity During Speaking: From Syntax to Phonology in 40 Milliseconds

Miranda van Turennout,* Peter Hagoort, Colin M. Brown

In normal conversation, speakers translate thoughts into words at high speed. To enable
this speed, the retrieval of distinct types of linguistic knowledge has to be orchestrated
with millisecond precision. The nature of this orchestration is still largely unknown. This
report presents dynamic measures of the real-time activation of two basic types of
linguistic knowledge, the syntactic and the phonological. Electrophysiological data
demonstrate that during noun-phrase production speakers retrieve the syntactic gender of a noun before
its abstract phonological properties. This two-step process operates at high speed: the
data show that phonological information is already available 40 milliseconds after syn-
tactic properties have been retrieved.
LOS ANGELES – A surprising new study released Monday by UCLA's Institute For Child Development revealed that human babies, long thought by psychologists to be highly inquisitive and adaptable, are actually extraordinarily stupid.

The study, an 18-month battery of intelligence tests administered to over 3,500 babies, concluded categorically that babies are "so stupid, it's not even funny."

According to Institute president Molly Bentley, in an effort to determine infant survival instincts when attacked, the babies were prodded in an aggressive manner with a broken broom handle. Over 90 percent of them, when poked, failed to make even rudimentary attempts to defend themselves. The remaining 10 percent responded by vacating their bowels.

It is unlikely that the presence of the babies' fecal matter, however foul-smelling, would have a measurable defensive effect against an attacker in a real-world situation," Bentley said.

Another test, in which the infants were placed on a mound of dirt outdoors during a torrential downpour, produced similarly bleak results.

"The chicken, dog and even worm babies that we submitted to the test as a control group all had enough sense to come in from the rain or, at least, seek shelter under a leafy clump of vegetation or outcropping of rock," test supervisor Thomas Howell said. "The human babies, on the other hand, could not grasp even this incredibly basic concept, instead merely lying on the ground and making gurgling noises."
The --- --- -- …
--- cat --- -- …
--- --- sat -- …

Self-paced reading

We are limited less by the sensitivity of our tools
… than by the sensitivity of our theories
traditional questions

process neutral account of ±grammatical sentences

traditional tools

acceptability judgments (on steroids)
‘Experimental Syntax’

- acceptability judgments: lots of them!
- yes/no scale ratings; magnitude estimation
- we do lots of these … but the results are rarely surprising
- most results of careful armchair linguistics supported

Sprouse & Almeida 2011ab: ~98% replication* of cases in Adger’s *Core Syntax* textbook and in *Linguistic Inquiry* 2001-2010

- statistical significance is overrated; subtle contrasts are subtle; so statistics don’t make the contrasts any more categorical
n > 1

- Easy to introspect about individual examples or minimal pairs
- Introspection not feasible for more complex patterns, within & across individuals
- Example #1: large scale judgments as tests of abstract theories (Gibson et al.)
 Theories claim that some superficially similar phenomena are unrelated
 Theories claim that some superficially different phenomena are related
 Test: greater co-variance in judgments for related phenomena
- Example #2: testing reductionist accounts of island effects...
Example #2: testing ‘reductionist’ accounts of islands

Theoretical claim: island violations are not ungrammatical, just difficult
(e.g., Kluender & Kutas 1993; Hofmeister & Sag 2010)

if island effects reflect processing capacity overload, then severity of island effects should covary with individual capacity

Island: interaction of (i) long extraction, (ii) island-inducing structures

Subject island
a. Who ___ thinks the speech interrupted the TV show?
b. Who do you think ___ interrupted the TV show?
c. Who ___ thinks the speech about global warming interrupted the TV show?
d. *Who do you think the speech about ___ interrupted the TV show?

Sprouse, Wagers, & Phillips 2012, Language
size of island effect

island violation

Sprouse, Wagers, & Phillips 2012, Language
4 island types, 2 memory tasks (serial recall, n-back), n = 315
island severity vs. memory capacity
capacity differences account for 0% - 3% of variance

Sprouse, Wagers, & Phillips 2012, *Language*
traditional questions

process neutral account of ±grammatical sentences

non-traditional tools

time-sensitive measures
developmental dissociations

experiments as arbiters of theoretical disputes
Timing & Traces

Wh-phrase forms dependency with different position in different theories. Suggestion: use timing evidence to decide between competing theories.
Can timing evidence decide between competing theories?

Much evidence collected ...

Wh-dependencies in English formed at verb, i.e., earlier than gap site (e.g., Crain & Fodor 1985; MacDonald 1989; Pickering & Barry 1991; Kaan et al. 2000)

Wh-dependencies in Japanese formed at gap site, i.e., earlier than verb (e.g., Nakano, Felser, & Clahsen 2002; Aoshima, Phillips, & Weinberg 2004)

Problem: timing evidence isn’t decisive \textit{because structure-building is not synchronous with spoken/written input} (Gibson & Hickok 1993; Phillips & Wagers 2007)

In other words: the theories don’t really make timing predictions.

So, fine-grained timing measures weren’t so useful after all
Developmental Dissociations

Rationale: do children reveal theoretically interesting contrasts that are obscured in adults?

Method: ≈ acceptability test ... but we can’t ask kids directly, experimental tricks needed

Suitable? Yes, the measure fits the theoretical question ... but interpreting the experimental findings is not trivial

Theoretically decisive? Sometimes

<table>
<thead>
<tr>
<th>Binding vs. coreference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mama Bear$_i$ touched her$_i$</td>
</tr>
<tr>
<td>Every bear$_i$ touched her$_i$</td>
</tr>
</tbody>
</table>

Delay of Principle B
Quantificational Asymmetry

Attempt to defend against criticisms in Elbourne (2005) & review of 30+ studies on PrB

Delay of Principle B
Quantificational Asymmetry

but fragility is very informative

Imperfective Paradox

Monkey build.imp smurf

Children interpret imperfectives as entailing completion .. unless temporal frame-of-ref given.
non-traditional questions

theories of real-time grammatical computation

non-traditional tools

many toys!
Real-time Linguistic Computation

• Traditional view: generative grammars are not process models

• But: sentence representations appear not to be process-independent, i.e., we can’t create the same representation in multiple ways

→ the traditional process-neutrality is merely a convenient simplification
→ better to develop process models, claims about real-time operations

• How do we encode and navigate linguistic representations in memory?

What mental operations underlie relations that we normally draw with indices, lines, copies, etc.?

• Initial strategy
Try to show that real-time processes are “grammatically infallible”
Selective Fallibility

- Many grammatical constraints have robust & early on-line effects

- Binding Condition C

 While *he* was reading the book, *John* ate an apple.

 He ate an apple while *John* was reading the book.

 (Kazanina et al. 2007; Aoshima et al. 2009)

- Island constraints – does on-line gap search look inside islands?

 No! (many demonstrations)

- Implies grammatically rich representations and processes
Selective Fallibility – Grammatical Illusions

Agreement

“The ideas that Cheney are putting forward could find fertile ground with the American people.” (Washington Post, 5/21/09)

“The word order preference previously observed in [...] type languages are not universal.” (Poster session – today!)

Comparatives

“More people have been to Russia than I have.”

Negative Polarity Items (NPIs)

“The bills [that no senators supported] will ever become law.”

Thematic Role Reversals

“I’m not going to solely blame all of man’s activities on climate change.” (9/30/08)
Two ways to search structures in memory

serial, structure-guided search

parallel, cue-guided search

structure-sensitive, avoids interference
slow, esp. for longer relations

susceptible to interference
fast, even for longer relations

McElree et al. 2003; Lewis et al. 2006; Wagers, Lau, & Phillips, 2009
Same Memory – Different Access

Subject-Verb Agreement

The diva [that accompanied the harpist on stage] clearly was flawless …
The diva [that accompanied the harpists on stage] clearly were flawless …

The diva [that accompanied the harpist on stage] clearly were flawless …
The diva [that accompanied the harpists on stage] clearly were flawless …

Subject-Reflexive Agreement

The diva [that accompanied the harpist on stage] clearly presented herself …
The diva [that accompanied the harpists on stage] clearly presented themselves …

The diva [that accompanied the harpist on stage] clearly presented themselves …
The diva [that accompanied the harpists on stage] clearly presented themselves …

Both processes require access to identical element -- the subject of the same clause.

Dillon, Mishler, Sloggett, & Phillips, 2011
Timing – surprising speed

Ultra-fast syntactic analysis seen with ERPs

Early Left Anterior Negativity (ELAN) – 150-250ms

John criticized Max’s proof of the theory.
John criticized Max’s of proof the theory.

Timing of brain response is as fast or faster than lexical access. This leaves almost zero time for syntactic analysis.

Proposal
Speed is achieved by syntactic pre-computation
Possessor predicts noun ➔ preposition mismatches

Evidence
Ellipsis can “turn off” prediction for noun

Although I like Bill’s book, I don’t like Max’s ...

➔ reduced ELAN effect

Syntactic predictions are very fast
Timing – surprising slowness

ERP N400 – reflects lexico-semantic processes
(Kutas & Hillyard 1980)

Generally shows clear semantic sensitivity

She was stung by a {bee|wasp} (Kutas et al.)

The author {wrote|began} the book. (Kuperberg, Hagoort)

I know which book you {read|hoped} that …

Cases of semantic ‘blindness’

A robin is not a {bird|tree} (Fischler et al. 1983)

cop BA thief arrest
thief BA cop arrest

last week thief BA cop arrest
thief BA cop last week arrest

Reversal #1 – blind to highly predictable
No N400 effect

Reversal #2 – blind to local S-O-V seq.
No N400 effect

Reversal #2 – sensitive to non-local S-O-V
N400!
Don’t measure height with a stopwatch

• Lab toys are nice

 But they become more useful once we develop theories/models that have the temporal (or spatial) precision of the tools

• High-powered judgment studies yield few surprises about simple paradigms
 Statistical precision does not make subtle judgments clearer

 But more complex hypotheses about judgments can be explored

• Arbitrating traditional process-neutral theories:
 Timing evidence is good for testing timing predictions
 Developmental dissociations do sometimes work out

• Developing detailed models/theories with time/space predictions
 Rapidly developing area; sometimes slow and dumb is very informative
Matt Wagers (UCSC)
Ellen Lau (MGH/UMd.)
Brian Dillon (UMass)
Nina Kazanina (Bristol)
Masaya Yoshida (NWU)
Ming Xiang (Chicago)
Clare Stroud (Natl. Acad.)

Sachiko Aoshima
Akira Omaki (JHU)
Pedro Alcocer
Wing Yee Chow
Jon Sprouse (UC Irvine)
Alexis Wellwood
Dan Parker

Amy Weinberg
Jeff Lidz
Roumi Pancheva (USC)
Valentine Hacquard
Moti Lieberman (McGill)
Shevaun Lewis
Dave Kush

NSF
“It has sometimes been argued that linguistic theory must meet the empirical condition that it account for the ease and rapidity of parsing. But parsing does not, in fact, have these properties. [...] In general, it is not the case that language is readily usable or ‘designed for use.’” (Chomsky & Lasnik, 1993, p. 18)

“...the language comprehension system creates representations that are ‘good enough’ (GE) given the task that the comprehender needs to perform. GE representations contrast with ones that are detailed, complete, and accurate with respect to the input.” (Ferreira & Patson, 2007, p. 71)

“we understand everything twice”
(Townsend & Bever, 2001)
At least 4 different uses of the terms:
1. Distinction between mechanism and behavior
2. Declarative vs. procedural specification of a formal system
3. Distinction between specialized mental systems
4. Abstraction from resource limitations